AMAZING WORLD OF SCIENCE WITH MR. GREEN
  • Home
  • IBDP Environmental Systems and Societies
    • ESS Topics >
      • Statistical Anaylsis
      • ESS Topic 1 Foundations of ESS >
        • ESS Topic 1.1: Environmental Value Systems
        • ESS Topic 1.2: Systems and Models
        • ESS Topic 1.3: Energy and Equilibria
        • ESS Topic 1.4: Sustainability
        • ESS Topic 1.5: Humans and Pollution
      • ESS Topic 2 Ecosystems and Ecology >
        • ESS Topic 2.1: Species and Population
        • ESS Topic 2.2: Communities and Ecosystems
        • ESS Topic 2.3: Flows of Energy and Matter
        • ESS Topic 2.4: Biomes, Zonation and Succession
        • ESS Topic 2.5: Investigating Ecosystems
      • ESS Topic 3: Biodiversity and Conservation >
        • ESS Topic 3.1: Introduction to Biodiversity
        • ESS Topic 3.2: Origins of Biodiversity
        • ESS Topic 3.3: Threats to Biodiversity
        • ESS Topic 3.4: Conservation of Biodiversity
      • ESS Topic 4: Water and Aquatic Food Production Systems and Society >
        • ESS Topic 4.1: Introduction to Water Systems
        • ESS Topic 4.2: Access to Fresh Water
        • ESS Topic 4.3: Aquatic Food Production Systems
        • ESS Topic 4.4: Water Pollution
      • ESS Topic 5:Soil Systems and Terrestrial Food Production Systems and Society >
        • ESS Topic 5.1: Introduction to Soil Systems
        • ESS Topic 5.2: Terrestrial Food Production Systems and Food Choices
        • ESS Topic 5.3: Soil Degradation and Conservation
      • ESS Topic 6: Atmospheric Systems and Society >
        • ESS Topic 6.1: Introduction to the Atmosphere
        • ESS Topic 6.2: Stratospheric Ozone
        • ESS Topic 6.3: Photochemical Smog
        • ESS Topic 6.4: Acid Deposition
      • ESS Topic 7: Climate Change and Energy Production >
        • ESS Topic 7.1: Energy Source and Security
        • ESS Topic 7.2: Climate change – Causes and Impacts
        • ESS Topic 7.3: Climate change – Mitigation and Adaptation
      • ESS Topic 8: Human System and Resource Use >
        • ESS Topic 8.1: Human Populations Dynamics
        • ESS Topic 8.2: Resource Use in Society
        • ESS Topic 8.3 Solid Domestic Waste
        • ESS Topic 8.4 Human Population Carrying Capacity
    • ESS Internal Assessments >
      • ESS IA Context
      • ESS IA Planning >
        • Surveys
        • Secondary Data - Data Bases
      • ESS IA Results, Analysis & Conclusions
      • ESS IA Discussion and Evaluation
      • ESS IA Application
      • ESS IA Communication
      • ESS Personal Skills in IA
    • ESS Extended Essay
    • IB Command Terms
    • Official IB ESS Glossary
    • IB ESS Revision
    • Group 4 Project
  • IBDP Biology
    • IB Biology SL Topics >
      • Statistical Anaylsis
      • Topic 1: Cell Biology >
        • Topic 1.1 Introduction to Cells
        • Topic 1.2 Ultra-Structure of Cells
        • Topic 1.3 Membrane Structure
        • Topic 1.4 Membrane Transport
        • Topic 1.5 Origin of Cells
        • Topic 1.6: Cell Division
      • Topic 2: Molecular Biology >
        • Topic 2.1:Molecules to Metabolism
        • Topic 2.2 Water
        • Topic 2.3: Carbohydrates and Lipids
        • Topic 2.4: Proteins
        • Topic 2.5: Enzymes
        • Topic 2.6: Structure of DNA and RNA
        • Topic 2.7: DNA Replication, Transcription and Translation
        • Topic 2.8 Cellular Respiration
        • Topic 2.9: Photosynthesis
      • Topic 3: Genetics >
        • Topic 3.1: Genes
        • Topic 3.2: Chromosomes
        • Topic 3.3: Meiosis
        • Topic 3.4: Inheritance
        • Topic 3.5: Genetic Engineering and Biotechnology
      • Topic 4: Ecology >
        • 4.1 Species, Communities and Ecosystems
        • 4.2 Energy Flow
        • 4.3 Carbon Cycle
        • 4.4 Climate Change
      • Topic 5: Evolution and Biodiversity >
        • Topic 5.1 Evidence for Evolution
        • Topic 5.2 Natural Selection
        • Topic 5.3: Classification of Biodiversity
        • Topic 5.4: Cladistics
      • Topic 6: Human Physiology >
        • Topic 6.1: Digestion and Absorption
        • Topic 6.2: The Blood System
        • Topic 6.3: Defense Against Infectious Disease
        • Topic 6.4: Gas Exchange
        • Topic 6.5: Neurones and Synapses
        • Topic 6.6: Hormones, Homeostasis and Reproduction
    • IB Biology HL Topics >
      • Topic 7: Nucleic Acids >
        • Topic 7.1 DNA Structure and Replication
        • Topic 7.2 Transcription and Gene Expression
        • Topic 7.3 Translation
      • Topic 8: Metabolism, Cell Respiration and Photosynthesis >
        • Topic 8.1 Metabolism
        • Topic 8.2 Cell Respiration
        • Topic 8.3 Photosynthesis
      • Topic 9: Plant Biology >
        • Topic 9.1 Transport in the Xylem of Plants
        • Topic 9.2 Transport in the Phloem of Plants
        • Topic 9.3 Growth in Plants
        • Topic 9.4: Reproduction in Plants
      • Topic 10: Genetics and Evolution >
        • Topic 10.1: Meiosis
        • Topic 10.2: Inheritance
        • Topic 10.3: Gene Pools and Speciation
      • Topic 11: Animal Physiology >
        • Topic 11.1 Antibody Production and Vaccination
        • Topic 11.2: Movement
        • Topic 11.3: The Kidney and Osmoregulation
        • Topic 11.4: Sexual Reproduction
    • Options >
      • Option D: Human Physiology >
        • D1: Human Nutrition (Core)
        • D2: Digestion (Core)
        • D3: Function of the Liver (Core)
        • D4: Function of the Heart (Core)
        • D5: Hormones and Metabolism (HL)
        • D6: Transport of Respiratory Gases (HL)
    • IB Biology Internal Assessment >
      • Internal Assessment Personal Engagement
      • Internal Assessment Exploration
      • Internal Assessment - Analysis
      • Internal Assessment Evaluation
      • Internal Assessment - Communications
    • IB Biology Revision
    • Group 4 Project
  • Grade 10 MYP Biology
    • Grade 10 Topic 1: Blood and Circulation
  • Grade 9 MYP Biology
    • Grade 9 Topic 1: Life Processes
    • GR9 Topic 2: Cells
    • GR 9 Topic 3: Macro Molecules
    • GR9 Topic 4 Cellular Movement
    • GR 9 Topic 5: Transport In Plant
    • GR 9 Topic 6 Enzymes
    • GR 9 Topic 7 Microscopy
  • MYP Laboratory Guidance
  • Guide To Exam Success
    • What Are You Eating
    • Get Organized
    • Day Before the Exam
    • When You Sit Down For The Exam
    • Taking The Exam
  • Scientific Dictionary
  • Scientific Method
  • About Me

Evidence of Evolution

Natural selection is the nonrandom process by which biologic traits become either more or less common in a population as a function of differential reproduction of their bearers. It is a key mechanism of evolution.

The genetic variation within a population of organisms may cause some individuals to survive and reproduce more successfully than others. Factors that affect reproductive success are also important, an issue that Charles Darwin developed in his ideas on sexual selection.

Natural selection acts on the phenotype, or the observable characteristics of an organism, but the genetic (heritable) basis of any phenotype that gives a reproductive advantage will become more common in a population (see allele frequency). Over time, this process can result in adaptations that specialize populations for particular ecological niches and may eventually result in the emergence of new species. In other words, natural selection is an important process (though not the only process) by which evolution takes place within a population of organisms. As opposed to artificial selection, in which humans favor specific traits, in natural selection the environment acts as a sieve through which only certain variations can pass.

Natural selection is one of the cornerstones of modern biology. The term was introduced by Darwin in his influential 1859 book On the Origin of Species, in which natural selection was described as analogous to artificial selection, a process by which animals and plants with traits considered desirable by human breeders are systematically favored for reproduction. The concept of natural selection was originally developed in the absence of a valid theory of heredity; at the time of Darwin's writing, nothing was known of modern genetics. The union of traditional Darwinian evolution with subsequent discoveries in classical and molecular genetics  is termed the modern evolutionary synthesis. Natural selection remains the primary explanation for adaptive evolution.

Theodosius Dobzhansky, a geneticist whose work influenced 20th century research on evolutionary theory, said, "Nothing in biology makes sense, except in light of evolution." This quote emphasizes the role of evolution as the most important unifying principle in biology. Living things might, at first, seem very diverse, but closer inspection reveals a surprising unity. This unity, or common ancestry, can be explained by evolutionary theory. With such an important theory at stake, it is essential to understand the evidence upon which it is based.

The Task
In this Evolution WebQuest you will investigate a variety of types of evidence for evolution. Your team will be responsible for learning about fossil evidence, structural evidence, and genetic evidence for evolution and presenting this information to the class.

The Process

1. You will be assigned to a group of researchers

2.Each group will have specialists in anatomy and physiology, paleontology, and molecular biology. Anatomists study the structure of organisms, physiologists study the function of organisms, molecular biologists study genetics, and paleontologists study fossils.

3. Review the sites that apply to your specialty

4. Find four to five examples of evidence for evolution. Try to find specific examples, so that when you present to the class you will all have different examples to share. Also, try to find the date on which the evidence was discovered.

5.  The recommended sites are just examples. Feel free to search for your own.

Anatomists
• Evidence Supporting Biological Evolution (see "Common Structures")
• How Scientists Study Evolution
• What Is Morphology and Why Is It Important?
• Fossils Can Show How Certain Features Evolved
• It's a Bird, It's a Dinosaur?


Molecular Biologists
• Evolution Makes Sense of Homologies
• Axing the Family Tree
• Evidence of Evolution
• Chemical Clues to Darwin's Abominable Mystery
• Salvaged DNA Leads to Neanderthals' Mystique


Paleontologists
• Fossils Can Show How Certain Features Evolved
• Transitional Vertebrate Fossils FAQ
• Mother of All Mammals
• Shaking the Family Tree
• Evolution Makes Sense of Homologies
• The Nature of Fossils
• Dating Fossils
• Getting into the Fossil Record


6.Reconvene with your group, or work on your own, to create a presentation chart that looks like this

Special Areas of Interest                    Evidence                                         Significance
                                                (descriptions or drawings) 

Anatomy
Molecular Biology
Paleontology

 7. Present data to class

Conclusion
This WebQuest was designed to help you locate evidence for evolution from different areas of science. New evidence for evolution is being discovered every day. No evidence has been found which cannot be explained by evolution. If the future continues as in the past, we can look forward to more information about the genomes of earth's creatures, new discoveries in the fossil record, and the finding of new species in places like the ocean depths and the tropical rainforests. One thing is certain, more evidence will be added to support the theory of evolution.
Powered by Create your own unique website with customizable templates.