ORGANIC MOLECULES

Organic Compounds

 Compounds that contain CARBON are called organic.

 Macromolecules are large organic molecules.

Organic Molecules

- Carbon has 4 electrons in outer shell.
- Carbon can form covalent bonds with as many as 4 other atoms (elements).
- Usually with C, H, O or N.

Macromolecules: "giant molecules"

- There are four classes of organic (carbon based)
 macromolecules
 - 1. <u>Carbohydrates</u>
 - 2. <u>Lipids</u>
 - 3. <u>Proteins</u>
 - 4. Nucleic Acids

Macromolecules are polymers

- Large organic molecules.
- Also called POLYMERS.
- Made up of smaller "building blocks" called MONOMERS.
- What is a polymer?
- □ Poly = many; mer = part.

1. Carbohydrates

Carbo = <u>carbon</u>, hydrate = <u>water</u>;
 carbohydrates have the molecular

formula $(CH_2O)_n$

- Common types:
 - Sugar
 - Starch

Carbohydrates

• Functions:

- Store <u>chemical</u> energy for cellular use
- Structural support in cells
 - E.g. cellulose cell wall in plants

Monosaccharides

- Simplest kind of carbohydrate
- Single sugar molecule
- Basic building block is a monosaccharide $(CH_2O)n$; n = 3,5,6

Monosaccharides

- Monosaccharide
 - E.g. <u>glucose</u>, galactose, fructose

Disaccharides

- Disaccharide two mono's linked
 - sucrose table sugar
 - Lactose milk sugar
 - Maltose malt sugar

Formation of Disaccharides

- Glucose + glucose = maltose
- Glucose + fructose = sucrose
- Glucose + galactose = lactose

Polysaccharides

- Polysaccharides Many mono's linked
 - E.g. starch, glycogen, cellulose
 - <u>Insoluble</u>

2. Lipids

- Contain fewer oxygen's than carbohydrates
- Not <u>water</u> soluble

Lip

Examples:

- Fats
- Oils
- Waxes
- Steroids

STEROIDS

HARMFUL EFFECTS

BRAIN CANCER DEPRESSION VIOLENT BEHAVIOR

YELLOWING OF EYES AND SKIN

> BAD BREATH

SEVERE

DEEPENING OF VOICE (WOMEN)

HEART ATTACK STROKE

DEVELOPMENT OF BREASTS BREAST REDUCTION IN WOMEN

LIVER TUMORS LIVER CANCER

NAUSEA & VOMITING

KIDNEY DISEASE

ABDOMINAL PAIN DIARRHEA

> IN MEN: TESTICULAR SHRINKAGE IMPOTENCE

IN WOMEN: IRREGULAR MENSTRUAL CYCLES

BRUISING INFECTIONS (FROM INJECTIONS

STUNTED GROWTH

WEAK TENDONS

Lipids

• Functions:

- Energy storage long term
- Membrane structure
- Waterproofing
- Insulation
- Shock ab
- Chemical

Lipids

- Are made of two parts
- 1 Glycerol + 3 fatty acids

Lipids

Fatty acids are long molecules with a polar, hydrophilic end and a non-polar, hydrophobic "tail".

Fatty Acids: Saturated or Unsaturated

- 1. Saturated fats: "saturated with hydrogen"
 - have only <u>single</u> C-C bonds
 - solid at room temp
 - most <u>animal</u> fats

Fatty Acids: Saturated or Unsaturated

2. Unsaturated fats:

- liquid at room temp
- double bonds between carbonsC = C
- most <u>plant</u> fats

4. Protein

- Polymer of amino acids
- Made of elements carbon, hydrogen, oxygen and nitrogen (CHON)

Amino Acids

Amino acids bonded together by peptide bonds (straight chains)

4. Protein

- 20 amino acids needed by humans
- We can only make10
- Ones we have to take in are called essential amino acids

Proteins

Basic Function

1. Storage: albumin (egg white)

2. Transport: hemoglobin

3. Regulatory: hormones

4. Movement: muscles

5. Structural: membranes, hair, nails

6. Enzymes: cellular reactions

Shape important to Protein Function

Changing shape changes function

Proteins (Polypeptides)

Four levels of protein structure:

- A. Primary Structure
- B. Secondary Structure
- C. Tertiary Structure
- D. Quaternary Structure

Primary Structure

Amino acids bonded together by peptide bonds (straight chains)

Secondary Structure

3-dimensional folding arrangement of a primary structure into coils and pleats held together by hydrogen bonds.

Tertiary Structure

 Secondary structures bent and folded into a more complex 3-D arrangement of linked polypeptides

Bonds: H-bonds, ionic, disulfide

bridges (S-S)

□ Call a "subunit"

Alpha Helix

Beta Pleated Sheet

Quaternary Structure

- Composed of 2 or more "subunits"
- Globular in shape
- Form in Aqueous environments
- Example: enzymes (hemoglobin)

Factors That Determine Protein Conformation

- pH, temperature, salinity, etc.
- Change in environment may lead to denaturation of protein

Nucleic Acids

Nucleic acids

- Two types:
 - a. Deoxyribonucleic acid (DNA-double helix)
 - b. Ribonucleic acid (RNA-single strand)
- Nucleic acids are composed of long chains of nucleotides linked by dehydration synthesis.

Nucleic acids

Nucleotides include: phosphate group pentose sugar (5-carbon) nitrogenous bases: adenine (A) thymine (T) DNA only uracil (U) RNA only cytosine (C) guanine (6)

Nucleotide

Summary of the Organic Molecules:

