Standard Deviation!

Let's say we randomly select 9 men and 9 women and ask their GPAs and get these data:

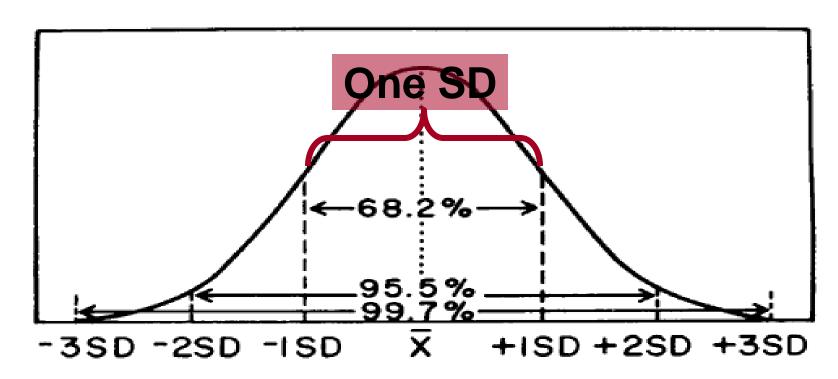
MEN	WOMEN
0.90	1.50
2.00	3.00
1.40	3.00
2.00	2.50
3.00	3.00
2.00	3.00
3.00	4.00
4.00	3.00
3.70	2.00

MEAN GPA FOR:

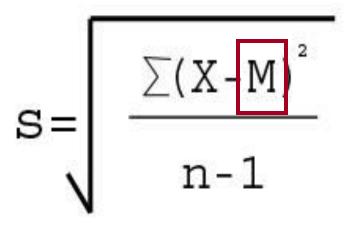
MEN: 2.44

WOMEN: 2.78

Can we conclude that the average GPA of ALL women at Skyline is higher than the average of ALL men?


Standard Deviation

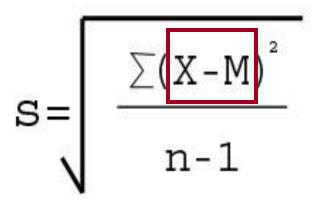
 The standard deviation is a measure the degree each data point in the set of data points varies (or deviates) from the mean


 The wider the spread of scores, the larger the standard deviation.

Standard Deviation

 For data that has a normal distribution, 68% of the data lies within one standard deviation of the mean.

1. Calculate the mean (M) of a set of data



MEAN GPA FOR:

MEN: 2.44

WOMEN: 2.78

 Subtract the mean from each point of data to determine (X-M)

MEN	WOMEN	
0.90 - 2.44 = -1.54	1.50 - 2.78 =	-1.28
2.00 - 2.44 = -0.44	3.00 - 2.78 =	0.22
1.40 - 2.44 = -1.04	3.00 - 2.78 =	0.22
2.00 - 2.44 = -0.44	2.50 - 2.78 =	-0.28
3.00 - 2.44 = 0.56	3.00 - 2.78 =	0.22
2.00 - 2.44 = -0.44	3.00 - 2.78 =	0.22
3.00 - 2.44 = 0.56	4.00 - 2.78 =	1.22
4.00 - 2.44 = 1.56	3.00 - 2.78 =	0.22
3.70 – 2.44 = 1.26	2.00 – 2.78 =	-0.78

3. Square each of the resulting numbers to determine (X-M)²

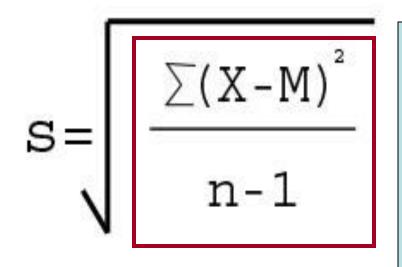
$$s = \frac{\sum (X - M)^{2}}{n - 1}$$

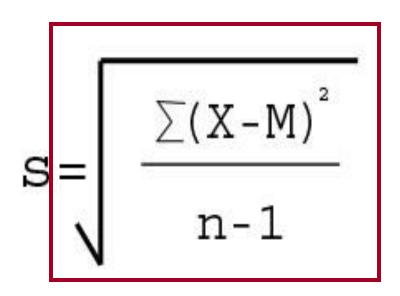
<u>MEN</u>		WOMEN	<u> </u>
$(-1.54)^2 =$	2.37	(-1.28) ² =	1.64
$(-0.44)^2 =$	0.19	$(0.22)^2 =$	0.05
$(-1.04)^2 =$	1.08	$(0.22)^2 =$	0.05
$(-0.44)^2 =$	0.19	$(-0.28)^2 =$	80.0
$(0.56)^2 =$	0.31	$(0.22)^2 =$	0.05
$(-0.44)^2 =$	0.19	$(0.22)^2 =$	0.05
$(0.56)^2 =$	0.31	$(1.22)^2 =$	1.49
$(1.56)^2 =$	2.43	$(0.22)^2 =$	0.05
$(1.26)^2 =$	1.59	$(-0.78)^2 =$	0.61

4. Add the values from the previous step together to get $\sum (X-M)^2$

	$\sum (X-M)^2$
s=	 n-1

MEN	WOMEN
2.37	1.64
0.19	0.05
1.08	0.05
0.19	0.08
0.31	0.05
0.19	0.05
0.31	1.49
2.43	0.05
<u>1.59</u>	<u>0.61</u>
8.68	4.06


5. Calculate (n-1) by subtracting 1 from your sample size. Your sample size is the total number of data points you collected.


N-1 for men =
$$9-1 = 8$$

$$N-1$$
 for women = $9-1 = 8$

6. Divide the answer from $\sum (X-M)^2$ by the answer from (n-1) to find $\sum (X-M)^2$

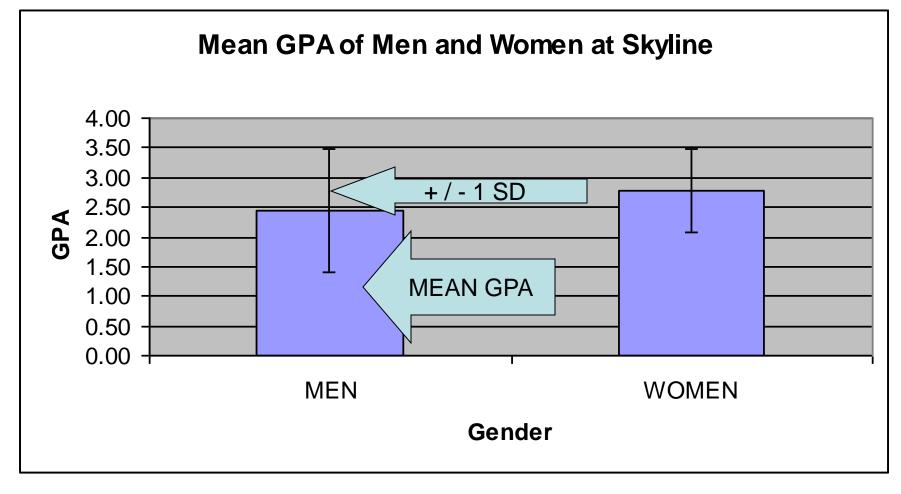
7. Calculate the square root of your previous answer to determine the standard deviation

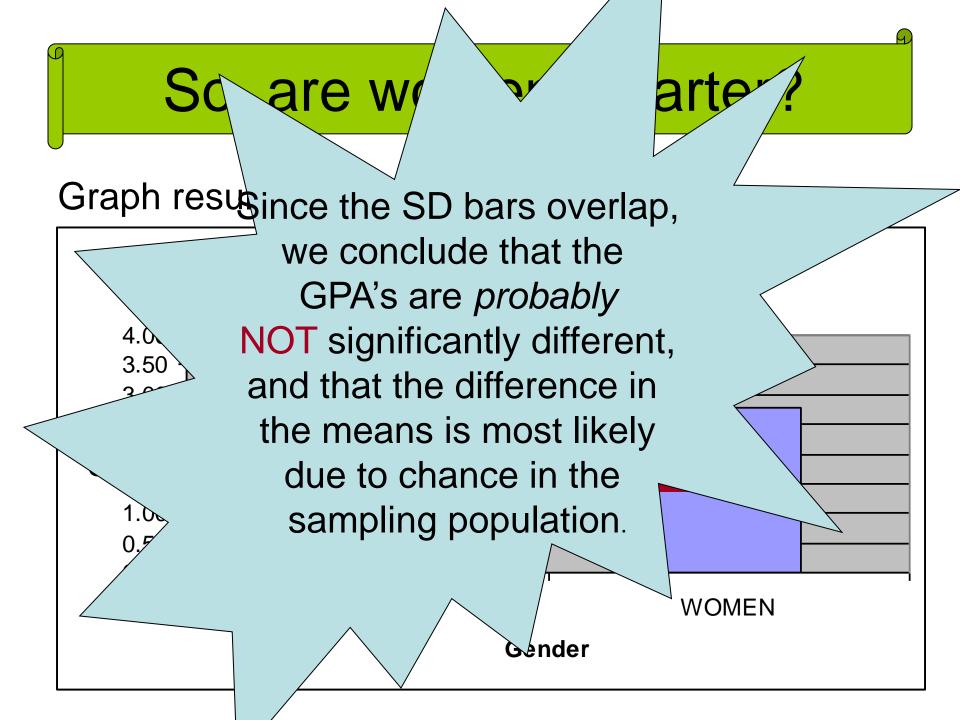
Men
$$\sqrt{1.09} = 1.04$$

Women $\sqrt{0.51} = 0.71$

This means that...

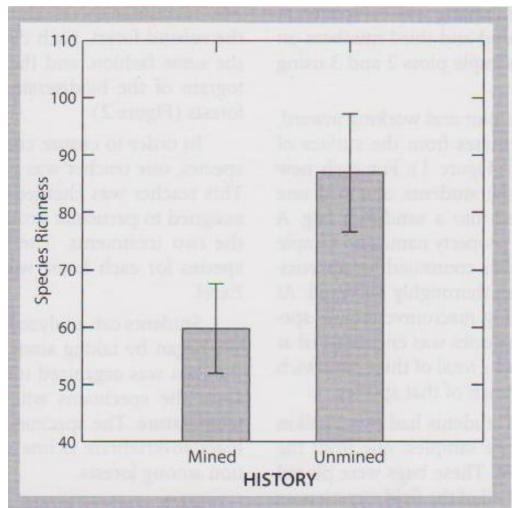
- In men, 68% of all students sampled have a GPA that falls within 1.04 grade points of the mean.
 - MEAN PLUS 1.04 = 3.49
 - MEAN MINUS 1.04 = 1.40


68% of men have a GPA between these values


- In women, 68% of all students sampled have a GPA that falls within 0.71 grade points of the mean.
 - MEAN PLUS 0.71 = 3.49
 - MEAN MINUS 0.71 = 2.07

68% of women have a GPA between these values

So, are women smarter?


Graph results to find out:

Since the SD bars DO NOT overlap, we conclude that the populations are *probably* significantly different, and that the difference in the means is most likely due to something MORE THAN

CHANCE.

Using Tools to Calculate Standard Deviation

- Excel 2003
- <u>TI-83</u>
- <u>Excel 2007</u> (doc)
- <u>TI-nspire</u> (external link)

PRACTICE PROBLEMS

