Notes: The T-Test

The Student's t-test is a statistical test that compares the \qquad and \qquad of two samples to see if there is a between them.

Where:
x_{1} is the mean of sample 1
s_{1} is the standard deviation of sample 1
n_{1} is the sample size of sample 1
x_{2} is the mean of sample 2
s_{2} is the standard deviation of sample 2
n_{2} is the sample size in sample 2

	Students in Room 1					Students in Room 2				
Student Height	145	140	138	142	154	148	153	157	161	162
(cm)	154	158	160	166	166	162	163	167	172	172

HOW TO CALCULATE T:

1. Calculate the mean (X) of a each sample

Room 1: \qquad Room 2: \qquad
2. Find the absolute value of the difference between the means
3. Work out the standard deviation for each sample (use a calculator...)

Room 1: \qquad Room 2: \qquad
4. Square the standard deviation for each group
5. Divide each squared standard deviations by the sample size of that group.
6. Add these two values
7. Take the square root of the number
8. Divide the difference in the means (step 2) by the standard error of the difference (step 7)
9. Determine the degrees of freedom (df) for the test. In the t-test, the degrees of freedom is the sum of the sample sizes of both groups minus 2 .
10. Given the df, look up the critical t-value in a standard table of significance

Use the 95\%
($p=0.05$)
confidence limit
11. Check your answers on-line using the t-test calculator posted at www.biologyforlife.com

SO WHAT?

